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New velocity fields for the well-known Prandtl solution are found in this paper. 

The system of equations of the plane problem of the theory of ideal plasticity with the 
von Mises fluidity condition is of the form 
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where ~ ~ and z are the components of the stress tensor, (u, v) is the velocity vector, 
and k is the yield stress in the case of pure shear. 

If a solution of Eqs. (I) and (2) is known, the system (3) and (4) determines a possible 
velocity field, which is nonunique as a rule. The system (I) and (2) is well studied; a re- 
view of the known invariant solutions is given in [I]. 

One of the most well known and practically important solutions of the system (I) and (2) 
has been found by Prandtl: 

(~ = - - p  - -  k ( x / h  - -  2-~/1 - -  y2/h'2), a u  = - - p  - -  k x / h ,  ~ = k g / h ,  (5 )  

where p and h are constants. This solution describes the stress state in a plastic layer 
with thickness 2h compressed by two rigid rough plates. 

For the stress field (5) the system (3) and (4) is written in the form 

(au or, . f ~ / a u  or) au av 
y ox - oy) = v h  - Y  I - ~ F + - ~  - '  --~-z + T F  =~ (6) 

We shall find invariant solutions of the system (6), A group of continuous transforma- 
tions allowable by the system (6) and found according to [2] is generated by the operators: 

a 0 a a a a a 
X1 - -  Ox ' X 2 = x ~ - -  y -'~'-u ' X3 - -  a u  ' X4  : a v  ' X 5 = u ~ ~ v - - ' ~ v "  

The optimal system of one-parameter subgroups necessary for construction of all signifi- 
cantly different invariant solutions [2] is of the form 

x~, x~ + ~x~, X~ + ~x~, x~ + ~x~, x~ + ~x~ + ~x~, 

where e and ~ are arbitrary constants. By virtue of the invariance criterion of [2], one 
can construct invariant solutions only on the subgroups XI + eX5 and XI + eX2 + BX3. We 
shall give these solutions. 

We shall seek the solution on the subgroup Xi + aX2 + BX3 in the form 

u = - -  axu + gx + g (y), v = - E  x + l (y),  (7) 

where f and g are functions subject to determination from the system (6). 
into (6) and solving the system obtained, we have 

u = - - a x y  + ~x  - -  a h  2 arcsln (y /h )  - -  ~ y - W ~  - y~ - 2 ~ V h  T ' ~ -  y2 + c 1 ,  

v = a x 2 / 2  @ a y 2 / 2  - -  ~y  @ c2 ,  

Substituting (7) 

(8) 
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where Cl and C2 are arbitrary constants. We note that when e = 0 (8) changes into the well- 
known Nadai solution [3], and when a ~ 0 we obtain a new velocity field. 

Remark. The condition that the energy dissipation be positive imposes the following 
constraint on the value of the parameters: B -- ~Y > 0 if y ~ I--h, h]:~ 

We shall construct the possible invariant solutions on the subgroup XI + ~Xs. We shall 
seek a solution invariant with respect to this subgroup in the form 

u = f(y)e ~ ,  v = g(y)e ax �9 ( 9 )  

S u b s t i t u t i n g  ( 9 )  i n t o  ( 6 ) ,  we o b t a i n  a s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  

y(~!  - g') = (l' + ~ g ) Y ~  - -  r ~! + g' = 0 .  

F r o m  t h i s  we h a v e  

- V ~  - y~g" + 2 ~ g ' ~  - ~ V ~  ~ - y~g = o. 

The latter equation reduces by the substitution g' = gu to the Riecati equation 

Y u ~_ ~ = 0 .  ~' ~ : ~  + 2 ~  ~ r ~ _ .  ~ 
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STABILITY OF A VISCOPLASTIC RING 

S. V. Serikov UDC 539.374:539.382 

We present a theoretical study of the unsteady deformation of cylindrical metal shells 
under impulsive loading. We investigate the stability of the inertial motion of the bound- 
aries of a flat ring toward or away from the center under small harmonic perturbations of 
the boundaries, the velocity, and the stress tensor. We derive a relation for the wave num- 
ber at which the motion becomes unstable, and compare the result with experimental data. 

I. Examples of Modeling Processes. In contrast with articles on the dynamic buckling 
of cylindrical shells under impulsive external or internal pressures [I-5], we consider prob- 
lems with large plastic deformations (of the order of 100%). Our method of treating the 
mechanism of the development of unstable motion is similar to that employed in papers on the 
instability of motion of a finite mass of liquid with a free boundary [6-8]. 

Figure I shows the result of an experiment on the axisymmetric compression of a D16 
Duralumin cylindrical shell by detonation products. The initial outside diameter, wall 
thickness, and height of the shell were, respectively, 22 x 2.5 x 80 mm. After the experi- 
ment the average dimensions were 9.4 x 3.9 • 80 mm with an internal square opening (Fig. I, 
magnification 10 x). In the drawing of a 10 x 2 mm 12KhIMF steel tube to 6 x 2.2 mm without 
a mandrel, a square channel is formed (Fig. 2, magnification 10 x). If we consider another 
method of longitudinal milling of seamless tubing, namely the reduction of 86 • I0 mm 20 St 
tubing without a mandrel to 65 x 11 ~ in two-roller circular-oval passes, we obtain a square 
internal channel (Fig. 3). 

These examples show that over a wide range of initial deformation parameters of tubes 
(velocity of boundaries 1-1000 m/sec, mechanical properties of the shell material, etc.) we 
have a characteristic internal profile. In a number of cases in the drawing and reduction 
of thick-walled tubes, hexagonal, octagonal, etc. internal channels are formed [9, 10]. Wavy 
boundaries are formed in the hot drawing of seamless tubes (Fig. 4). Here it is believed 
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